U-rich UN was cooled from the retrograde region, liquid U precipitated rapidly and only a portion was retained within UN grains. Similarly, when Th-rich ThN was quenched from temperatures 1870 to 2000°, liquid Th precipitated rapidly, but precipitation of solid Th was slower and it could be resolved optically only after the specimens were annealed at temperatures 1200 to 1450°. Therefore, in contrast to the experimental results obtained with the UN phase, quantitative microscopic data could be obtained for the Th-rich ThN phase boundary. The microscopic and the congruent sublimation results are consistent as shown in Figure 1.

Acknowledgments. We thank M. G. Bowman for discussions. The oxygen inert-gas fusion analyses were done by J. M. Hansel and M. E. Smith. The tungsten colorimetric analyses were done by K. S. Bergstresser.

Ranges of Composition of the Th_2N_2O and ThO_2 Phases Equilibrated with Different Nitrogen (Plus Oxygen) Atmospheres¹

R. Benz

Contribution from the Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico 87544. Received August 18, 1966

Abstract: The Th₃N₄, Th₂N₂O, and ThO₂ phases were equilibrated with N₂ at different pressures and selected temperatures between 1600 and 2000°. An appreciable homogeneity range in the Th₂N₂O and ThO₂ phases was revealed by microscopic examination of the cooled products. The compositions of all the phases and phase mixtures were found to be describable by the single formula ThN_{4/4}-(2z/3)O_z, where z is the composition variable ranging in value from 0 to 2. Accordingly, the elements in these phases exhibit valences identical with those of the ions Th⁴⁺, N³⁻, and O²⁻.

 $M^{easurements}$ of the electrical conductivity of ThO_2^2 and emf measurements with ThO_2^3 as an electrolyte indicate that ThO_2 is substantially ionic. When ThO₂ crystals are doped with lower valent cations, e.g., La³⁺, anion vacancies are formed accompanied by a diminished crystal density⁴ and an enhanced electrical conductivity.^{2,5} In principle, anion vacancies may also be formed by incorporating higher valent anions such as N^{3-} into the ThO₂ anion sublattice. In what follows, some conditions are described under which the oxygen atoms in the ThO_2 phase are replaced by nitrogen atoms. As the N:O ratio is increased, the hexagonal Th₂N₂O and, ultimately, the rhombohedral Th₃N₄ phases are formed.⁶ The existence of an appreciable composition range in the Th_2N_2O and ThO_2 phases is established microscopically. Under the experimental conditions, the compositions of the Th_3N_4 , $Th_2N_2O_4$, and ThO₂ phases and phase mixtures equilibrated under a variety of conditions fall on a plane in the Th-N-O phase diagram, and these compositions conform to those required for ionic valences.

Experimental Section

Procedure. Various mixtures of $Th + ThN + ThO_2$ (3 to 50 mole % Th as ThO_2) were made by adding weighed quantities of

ThO₂ to known amounts of Th + ThN powders that had been prepared by a method previously described.⁷ Each mixture was pressed into a 3-g cylinder 6 mm in diameter, sintered *in vacuo*, and allowed to react with N₂ at selected pressures (up to 2 atm) and temperatures (800 to 2000°) in a tungsten crucible.

The products were analyzed for Th by ignition of samples to ThO₂ in air at 800°. For specimens that contained 25 mole %ThO₂ or less, the O:Th ratio of the product was taken to be the same as that of the original mixture; nitrogen was computed by difference. The N:Th ratios obtained in this way were reproducible within ± 0.03 . Specimens that were prepared from mixtures with more than 25 mole % ThO2 suffered an appreciable loss of oxygen when heated to 2000°. This was evident because of the erosion of the tungsten crucible. Thus, the difference method described above is not a dependable method for computing the oxygen and nitrogen contents of the products with more than 25 mole % ThO₂. Additional information on the compositions of products was inferred from microscopic examinations as described below. Lattice parameters were determined from high-angle lines in photographs of X-ray diffraction powder patterns taken with Ni-filtered Cu K α radiation in a camera 115 mm in diameter.

Results

The mixtures that were heated in the temperature range 800 to 1200° did not equilibrate, and X-ray diffraction powder patterns of samples revealed the presence of complex mixtures of Th₃N₄, ThO₂, and Th₂N₂O phases in the products. The mixtures that were heated in the temperature range 1550 to 2000° reached equilibrium in the N₂ atmosphere within 1 day. Of the equilibrated mixtures, those containing 25 ± 2 mole % ThO₂ exhibited powder diffraction patterns of only the hexagonal Th₂N₂O phase with $a_0 = 3.883 \pm 0.001$ and $c_0 = 6.187 \pm 0.002$ A, in agreement with that reported

(7) R. Benz, C. G. Hoffman, and G. N. Rupert, J. Am. Chem. Soc., 89, 191 (1967).

⁽¹⁾ This work was done under the auspices of the U. S. Atomic Energy Commission.

⁽²⁾ F. Hund, Z. Anorg. Allgem. Chem., 274, 105 (1953).

⁽³⁾ M. F. Lasker and R. A. Rapp, Z. Physik. Chem. (Frankfurt), 45, 198 (1966).

⁽⁴⁾ F. Hund and W. Dürrwächter, Z. Anorg. Allgem. Chem., 265, 67 (1951).

⁽⁵⁾ J. Rudolph, Z. Naturforsch., 14A, 727 (1959).

⁽⁶⁾ R. Benz and W. H. Zachariasen, Acta Cryst., in press.

Figure 1. Photomicrograph of a specimen prepared from the mixture Th + ThN + 12 mole % ThO₂ by equilibrating 24 hr with 1.91 atm of N₂ at 1618°. The bulk composition is ThN_{1.16}O_{0.24}. The phases present at temperature were Th₃N₄ and nitrogen-rich Th₂N₂O. The large homogeneous grains are Th₃N₄. The relatively small needles are Th₃N₄ that formed by precipitation from Th₂N₂O as the specimen cooled. An X-ray diffraction powder pattern of a sample contained lines corresponding to the hexagonal Th₂N₂O and the rhombohedral Th₃N₄ phase (× 300).

Figure 2. Photomicrograph of a specimen prepared from the mixture Th + ThN + 12 mole % ThO₂ by equilibrating 3 hr with 1.91 atm of N₂ at 2000°. The bulk composition is the same as that shown in Figure 1, but the large Th₃N₄ grains are absent. The needles are Th₃N₄ that were formed by segregation from the nitrogen-rich Th₂N₂O phase as it cooled. An X-ray diffraction powder pattern of a sample was indistinguishable from that obtained with the preparation shown in Figure 1 (\times 300).

for pure Th₂N₂O.⁶ The X-ray diffraction powder patterns of samples taken from the other equilibrated mixtures corresponded to two phases. The phases thus identified were either Th₃N₄ (observed cell dimensions, $a_0 = 3.869 \pm 0.001$ and $c_0 = 27.41 \pm 0.03$ A) and Th₂N₂O or ThO₂ (observed cell dimension, $a_0 = 5.597$ \pm 0.001 A) and Th₂N₂O, depending on whether the initial percentage of ThO_2 was less or more than 25, respectively. The stated cell dimensions agree with those reported, respectively, for Th₃N₄⁶ and ThO₂.⁸ The weights of the specimens that were prepared from mixtures containing less than 25 mole % ThO2 did not vary perceptibly (less than 0.1%) with changes in N₂ pressures in the range 0.05 to 2.0 atm at 1600° or 0.6 to 2.0 atm at 2000°. Some representative results are listed in Table I. At the same temperatures but at lower N₂ pressures, the Th₂N₂O phase decomposed to mixtures of ThN and ThO₂.

Th₂N₂O grains that had been equilibrated at selected temperatures between 1550 and 2000° and ThO₂ grains that had been equilibrated at 2000° were found to be inhomogeneous at room temperatures. The inhomo-

Figure 3. Photomicrograph of a specimen prepared from the mixture Th + ThN + 20 mole % ThO₂ by equilibrating 16 hr with 1.61 atm of N₂ at 1986°. The bulk composition is ThN_{1.06}O_{0.40}. The specimen was single-phase, nitrogen-rich Th₂N₂O at temperature. The dark islands are Th₃N₄ particles that precipitated as the specimen cooled. An X-ray diffraction powder pattern of a sample contained lines corresponding to the Th₂N₂O phase and only faint lines corresponding to the Th₃N₄ phase (air etched, ×1000).

geneities formed micro patterns that indicated that each specimen had been a homogeneous solid solution at temperature, but that phase segregation had occurred as they were rapidly cooled. These observations

Table I. Analyses of the Mixtures $Th + ThN + ThO_2$ after Equilibration with Different N₂ Atmospheres^{*a*}

-	Constraint and the set of the		- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	_		
Initial Th as					— Minor	phase — By
ThO ₂ ,	æ.		T	Product	D	optical
mole	Time,	p_{N_2}	Temp,	bulk	Ву	micros-
%	hr	atm	°C	compn	X-ray	copy
5	24	0.93	2000	ThN1.26O0.10	Th ₃ N ₄	Th ₃ N ₄
12	8	1.91	2000	ThN1.16O0.24	Th_3N_4	Th ₃ N ₄
22	16	1.60	1986	ThN1.05O0.44	Th_3N_4	Th ₃ N ₄
25	8	1.91	1790	ThN0.98O0.50	None	None
40	24	2.00	2000	$ThN_{0.91}O_{0.63}{}^{b}$	ThO_2	ThO_2

^{*a*} The chief phase in all the products was Th_2N_2O . ^{*b*} This formula was computed from the Th content as determined by ignition, the O + N content as computed by difference neglecting the difference between the atomic weights of O and N, and the formula given in the Discussion.

are in accord with the absence of an appreciable variation in the room-temperature lattice parameters as reported above; the solid solutions that were formed at elevated temperatures were not retained in the cooled products. By equilibrating a series of different compositions and identifying phases in the products microscopically, the Th₂N₂O phase was found to range in composition from $ThN_{1.22}O_{0.20}$ to $ThN_{1.0}O_{0.5}$ at 1600 ± 40° and from ThN_{1.28}O_{0.10} to ThN_{1.0}O_{0.5} at 2000 \pm 48°. No perceptible range of composition was found in the ThO₂ phase at 1600°; however, the composition coexisting with Th_2N_2O at the higher temperature (2000°) was found micrographically to be approximately ThN_{0.1}- $O_{1.85}$, corresponding to an appreciable nitrogen solubility. No evidence for solubility of oxygen in the Th₃N₄ phase was observed.

Figure 1 is a photomicrograph of a specimen that consisted of the two phases Th_3N_4 + nitrogen-rich Th_2N_2O at 1618°. Figure 2 is a photomicrograph of a specimen with the same bulk composition as that in Figure 1; however, the specimen had been equilibrated in N_2 at the higher temperature, 2000° and cooled. The latter specimen was single phase at temperature.

⁽⁸⁾ W. A. Lambertson, M. H. Mueller, and F. H. Gunzel, Jr., J. Am. Ceram. Soc., 36, 397 (1953); R. J. Ackermann, E. G. Rauh, R. J. Thorn, and M. C. Cannon, J. Phys. Chem., 67, 762 (1963).

The photomicrograph in Figure 3 shows a specimen consisting of large Th₂N₂O grains containing small (dark) particles, probably Th₃N₄, that were formed by precipitation as the specimen cooled. The bulk composition is more nearly that of the formula Th₂N₂O than is that shown in Figure 2, and a corresponding smaller proportion of Th₃N₄ precipitate is seen. Specimens prepared from mixtures containing 25 mole % ThO₂ were found to have the composition ThN_{0.99}-O_{0.50} after being equilibrated 24 hr in 2 atm of N₂ at selected temperatures 1700 to 1800°. The specimens were virtually single phase by microscopic examination. No evidence was obtained for the (O + N):Th ratio exceeding 1.5 in the Th₂N₂O phase.

Mixtures with 40 to 50 mole % ThO₂ that had been equilibrated at temperature and cooled contained two microscopically distinct regions corresponding to two distinct phases at temperature. The first region was translucent and appeared light orange to yellow in color. It consisted mostly of the ThO₂ phase in which needles or platelets of precipitate, probably Th₂N₂O had formed. The second region appeared homogeneous. It had a gray to maroon color, depending on grain size, and consisted of the Th₂N₂O phase. The two coexisting regions are shown in Figure 4.

Discussion

The above experimental results can be systemized with a simple interpretation. The first four products listed in Table 1 were single-phase, nitrogen-rich Th₂N₂O at temperatures. Considering these in reversed order, the fourth to the first as listed, which is the order of increasing deviations from the Th₂N₂O composition, the N:Th ratio increases from 0.98 to 1.26, while the anion to cation ratio, *i.e.*, (N + O): Th ratio, decreases from 1.48 to 1.36. Thus, we were led to inquire if the compositions of Th₂N₂O phase may be simulated by replacing O²⁻ with N³⁻ ions on lattice sites and simultaneously creating anion vacancies. Now, neither the Th_2N_2O nor the Th_3N_4 phase can be heated directly by electromagnetic induction in eddy-current heaters indicating a low electrical conductivity characteristic of ionic compounds. The unit cell of the stoichiometric Th₂N₂O phase contains two Th atoms, two equivalent nitrogen atoms, and one oxygen atom. Coulombic energy requirements make anion-cation substitutional defects improbable, and changes of composition are tentatively assumed to be describable in terms of the number and kinds of atoms on the anion sites of the Th₂N₂O lattice. The charge neutrality condition demands that two N³⁻ ions and one anion vacancy be substituted for every three O²⁻ ions removed. Accordingly, the chemical compositions of ionic Th_2N_2O , Th_3N_4 , and, in addition, ThO_2 are expressible with the single formula ThN_{4/3-(2z/3)}O_z ($0 \le z \le 2$), where z is the composition variable, valid for single-phase regions and two-phase mixtures. When z is allowed to take on the values 2, 1/2, and 0, the respective compositions

Figure 4. Photomicrograph of the mixture Th + ThN + 40 mole % ThO₂ after being equilibrated for 1 hr at 2000° in 1.91 atm of N₂. The specimen was visually inhomogeneous and contained two distinct regions: (1) a light orange to yellow region (area of intermediate darkness) which consisted of ThO₂ with platelets of precipitate, probably Th₂N₂O, and (2) a gray to maroon region that consisted of Th₂N₂O. The dark areas are cavities (air etched, \times 300).

ThO₂, Th₂N₂O, and Th₃N₄ are obtained. Further, it may be seen that the compositions of the first four products listed in Table I are, indeed, describable with the above formula. These are typical results. The compositions of other products equilibrated at intermediate pressures and temperatures were also found to agree with the above formula within the stated uncertainty of the analyses. Thus, the above formula describes the compositions of all the products that were equilibrated with N_2 at pressures sufficiently high that the ThN phase did not exist, and the atoms in the ThO2, Th2N2O, and Th_3N_4 phases exhibit valences identical with those of the corresponding ions Th⁴⁺, N³⁻, and O²⁻. The solid solutions were observed to segregate rapidly as they were cooled, and this is apparently achieved by exchange of O²⁻ and N³⁻ ions.

In contrast to the above results, a nitrogen-deficient Th_3N_4 phase (1600 to 2000°) has been reported.⁷ Appreciable deviations from the ionic valences are therefore to be expected in the Th_3N_4 phase at the nonstoichiometric compositions.

The electrical conductivity of ThO₂ in nitrogen-rich $N_2 + O_2$ mixtures at different temperatures (862–1497°) has been reported by Rudolph.⁵ According to his results, the conductivity increases with temperature more rapidly for higher N_2 pressures (lower O_2 pressure). Considering the relatively high O_2 pressures involved, 0.1 to 760 torr, it seems possible that the enhanced electrical conductivity in the presence of N₂ gas resulted from exchange of N³⁻ ions for O²⁻ ions with formation of anion vacancies which have a relatively high mobility. Thus, the electrical conductivity data of Rudolph suggests that an appreciable extent of nitrogen-oxygen exchange (and range of composition) may occur in the ThO₂ phase at temperatures as low as 1200° , which is lower than that observed by us with the less sensitive microscopic method.

Acknowledgments. The author thanks M. G. Bowman for discussions.